Мультиплексоры SDH. Технология SDH

Технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH) позволяет создавать надежные транспортные сети и гибко формировать цифровые каналы в широком диапазоне скоростей - от нескольких мегабит до десятков гигабит в секунду. Основная область ее применения - первичные сети операторов связи. Мультиплексоры SDH с волоконно-оптическими линиями связи между ними образуют среду, в которой администратор сети SDH организует цифровые каналы между точками подключения абонентского оборудования или оборудования вторичных (наложенных) сетей самого оператора - телефонных сетей и сетей передачи данных. Технология SDH находит также спрос в крупных корпоративных и ведомственных сетях, когда имеются технические и экономические предпосылки для создания собственной инфраструктуры цифровых каналов, например в сетях предприятий энергетического комплекса или железнодорожных компаний.

Каналы SDH относятся к классу полупостоянных (semipermanent) - формирование (provisioning) канала происходит по инициативе оператора сети SDH, пользователи же лишены такой возможности, поэтому такие каналы обычно применяются для передачи достаточно устойчивых во времени потоков. Из-за полупостоянного характера соединений в технологии SDH чаще используется термин «кросс-коннект» (cross-connect), а не коммутация.

Сети SDH относятся к классу сетей с коммутацией каналов на базе синхронного мультиплексирования с разделением по времени (Time Division Multiplexing, TDM), при котором адресация информации от отдельных абонентов определяется ее относительным временным положением внутри составного кадра, а не явным адресом, как это происходит в сетях с коммутацией пакетов.

С помощью каналов SDH обычно объединяют большое количество периферийных (и менее скоростных) каналов плезиохронной цифровой иерархии (Plesiochronous Digital Hierarchy, PDH). Сети SDH обладают многими достоинствами. Назовем главные среди них.

Гибкая иерархическая схема мультиплексирования цифровых потоков разных скоростей позволяет вводить в магистральный канал и выводить из него пользовательскую информацию любого поддерживаемого технологией уровня скорости без демультиплексирования потока в целом - а это означает не только гибкость, но и экономию оборудования. Схема мультиплексирования стандартизована на международном уровне, что обеспечивает совместимость оборудования разных производителей.

Отказоустойчивость сети. Сети SDH обладают высокой степенью «живучести» - технология предусматривает автоматическую реакцию оборудования на такие типичные отказы, как обрыв кабеля, выход из строя порта, мультиплексора или отдельной его карты, при этом трафик направляется по резервному пути или происходит быстрый переход на резервный модуль. Переключение на резервный путь осуществляется обычно в течение 50 мс.

Мониторинг и управление сетью на основе включаемой в заголовки кадров информации обеспечивают обязательный уровень управляемости сети вне зависимости от производителя оборудования и создает основу для наращивания административных функций в системах управления производителей оборудования SDH.

Высокое качество транспортного обслуживания для трафика любого типа - голосового, видео и компьютерного. Лежащее в основе SDH мультиплексирование TDM обеспечивает трафику каждого абонента гарантированную пропускную способность, а также низкий и фиксированный уровень задержек.

Сети SDH заняли прочное положение в телекоммуникационном мире. Сегодня они составляют фундамент практически всех крупных сетей - региональных, национальных и международных. Это положение еще более укрепилось в результате появления технологии спектрального мультиплексирования DWDM, поскольку сети SDH могут легко интегрироваться с этим новым типом оптических магистралей с поддержкой очень высоких скоростей в сотни гигабит в секунду. В магистральных сетях с ядром DWDM сети SDH будут играть роль сети доступа, т. е. выполнять те же функции, которые сети PDH играют по отношению к SDH.

Технологии SDH свойственны, конечно, и недостатки. Сегодня чаще всего говорят о ее неспособности динамически перераспределять пропускную способность между абонентами сети - свойстве, обеспечиваемом пакетными сетями. Значимость этого недостатка будет возрастать по мере увеличения доли и ценности трафика данных по отношению к стандартному голосовому.

ИСТОРИЯ ВОЗНИКНОВЕНИЯ

Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «синхронные оптические сети» (Synchronous Optical NETs, SONET) и по сути является развитием технологии PDH, появление которой в 60–е гг. позволило создать качественные и относительно недорогие цифровые каналы между телефонными станциями. PDH долгое время хорошо справлялась со своими обязанностями в качестве магистральной технологии, предоставляя пользователям каналы T1 (1,5 Мбит/с) - T3 (45 Мбит/с) в американском варианте, или каналы E1 (2 Мбит/с) - E3 (34 Мбит/с) - E4 (140 Мбит/с) в европейском и международном вариантах. Быстрое развитие телекоммуникационных технологий привело к необходимости расширения иерархии скоростей PDH и максимального использования всех возможностей, которые предоставляла новая среда - волоконно-оптические линии связи.

Одновременно с расширением линейки скоростей нужно было освободиться от выявленных за время эксплуатации этих сетей недостатков PDH, прежде всего, от принципиальной невозможности выделения отдельного низкоскоростного потока из высокоскоростного без полного демультиплексирования последнего. Сам термин «плезиохронный», т. е. «почти» синхронный, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более скоростные. Для выравнивания скоростей нескольких низкоскоростных каналов с рассогласованными частотами, технология PDH предусматривает вставку нескольких дополнительных бит между кадрами каналов с относительно меньшими скоростями. Затем эти кадры одинаковой частоты мультиплексируются с чередованием бит в составной кадр второго и более высоких уровней иерархии. В результате для извлечения пользовательских данных из объединенного канала необходимо полностью демультиплексировать кадры объединенного канала. Например, если требуется получить данные одного абонентского канала на 64 Кбит/с из кадров канала E3, эти кадры придется демультиплексировать до уровня кадров E2, затем - до уровня кадров E1, и, наконец, демультиплексировать и сами кадры E1. Если сеть PDH используется только в качестве транзитной магистрали между двумя крупными узлами, то операции мультиплексирования и демультиплексирования выполняются исключительно в конечных узлах, и проблем не возникает. Но если необходимо выделить один или несколько абонентских каналов в промежуточном узле сети PDH, то эта задача простого решения не имеет. Как вариант предлагается установка двух мультиплексоров уровня T3/E3 и выше в каждом узле сети. Первый выполняет полное демультиплексирование потока и отвод части низкоскоростных каналов абонентам, а второй опять собирает оставшиеся каналы вместе с вновь вводимыми в выходной высокоскоростной поток. При этом количество работающего оборудования удваивается.

Другой вариант - «обратная доставка» (back hauling). В промежуточном узле, где нужно выделить и отвести абонентский поток, устанавливается единственный высокоскоростной мультиплексор, который просто передает данные транзитом дальше по сети без их демультиплексирования. Эту операцию выполняет только мультиплексор конечного узла, после чего данные соответствующего абонента возвращаются по отдельному физическому каналу на промежуточный узел. Естественно, такие взаимоотношения коммутаторов усложняют организацию сети, требуют ее тонкого конфигурирования, что ведет к большому объему ручной работы и ошибкам, а также не обеспечивают необходимую гибкость - для отвода данных абоненту необходим отдельный физический канал.

Кроме этого, в технологии PDH не были предусмотрены встроенные средства обеспечения отказоустойчивости и управления сетью.

Все эти недостатки были учтены и преодолены разработчиками технологии SONET, первый вариант стандарта которой появился в 1984 г. Затем она была стандартизована комитетом T1 ANSI. Международная стандартизация технологии проходила под эгидой Европейского института телекоммуникационных стандартов (ETSI) и CCITT, совместно с ANSI и ведущими телекоммуникационными компаниями Америки, Европы и Японии. Основной целью разработчиков международного стандарта было создание технологии, способной передавать трафик всех существующих цифровых каналов уровня PDH (как американских T1–T3, так и европейских E1–E4) по высокоскоростной магистральной сети на базе волоконно-оптических кабелей и обеспечить иерархию скоростей, продолжающую иерархию технологии PDH до скорости в несколько Гбит/с.

В результате длительной работы удалось создать международный стандарт на синхронную цифровую иерархию (Synchronous Digital Hierarchy, SDH) - спецификации ITU-T G.702, G.703, G.704, G.707, G.708, G.709, G.773, G.774, G.782, G.783, G.784, G.957, G.958, Q.811, Q.812 и ETSI - ETS 300 147. Стандарты SONET также были усовершенствованы, и теперь оборудование и сети SDH и SONET стали совместимыми и могут мультиплексировать входные потоки практически любого стандарта PDH - и американского, и европейского.

ИЕРАРХИЯ СКОРОСТЕЙ И МЕТОДЫ МУЛЬТИПЛЕКСИРОВАНИЯ

Поддерживаемая технологией SONET/SDH иерархия скоростей представлена в Таблице 1.

Таблица 1. Поддерживаемые скорости SDH/SONET.

В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название: Synchronous Transport Module level N (STM-N). В технологии SONET существует два обозначения для уровней скоростей: Synchronous Transport Signal level N (STS-N) в случае передачи данных в виде электрического сигнала, и Optical Carrier level N (OC-N) в случае передачи данных по волоконно-оптическому кабелю. Далее для упрощения изложения будем ориентироваться на STM-N.

С момента своего появления в странах бывшего «Cоюза» технология ISDN мгновенно спровоцировала бурный интерес к себе со стороны сетевых специалистов, что в первую очередь было обусловлено распространенностью данной технологии в Европе и, конечно же, превосходными скоростными и физическими показателями.

ISDN (Integrated Services Digital Network) – цифровые сети с интегральными (встроенными) услугами. Эта технология относится к сетям, в которых режим коммутации каналов является основным, а данные обрабатываются в цифровой форме. Идеи перехода телефонных сетей общего пользования (ТфОП) на полностью цифровую обработку данных высказывались давно. Сначала предполагалось, что абоненты этой сети будут передавать только голосовые сообщения. Такие сети получили название IDN (Integrated Digital Network). Термин «интегрированная сеть2 относился к интеграции цифровой обработки информации сетью с цифровой передачей голоса абонентом. Идея такой сети была предложена еще в 1959 году. Затем было решено, что такая сеть должна предоставлять своим абонентам не только возможность поговорить между собой, но и воспользоваться другими услугами: факсимильной связью, телексом (передача данных между двумя терминалами), видеотекстом (получение хранящихся в сети данных на свой терминал), голосовой почтой и рядом других. Предпосылка для создания такого рода сетей сложилась в середине 70-х годов. К этому времени уже широко применялись цифровые каналы Т1 для передачи цифровых данных между АТС, а первый мощный цифровой коммутатор телефонных каналов 4ESS был выпущен компанией Western Electric в 1976 году.

В результате работ, проводимых по стандартизации интегральных сетей в ССITT, в 1980 году появился стандарт G.705, в котором излагались общие идеи такой сети. Конкретные спецификации сети ISDN появились в 1984 году в виде серии рекомендаций I. Этот набор спецификаций был неполным и не подходил для построения законченной сети. К тому же в некоторых случаях он допускал неоднозначность толкования или был противоречивым, то есть в целом все эти спецификации на то время были «сырыми2 и требовали доработки. В результате, хотя оборудование ISDN и начало появляться с середины 80-х годов, оно часто было несовместимым, особенно если производилось в разных странах. В 1988 году рекомендации серии I были пересмотрены и приобрели более детальный и законченный вид, хотя некоторые неоднозначности сохранились. Не так давно – в 1992 и 1993 годах – стандарты ISDN были еще раз пересмотрены и дополнены.

Само внедрение данной технологии началось в конце 80-х годов, однако высокая технологическая сложность пользовательского интерфейса, отсутствие единых стандартов на многие жизненно важные функции, а также необходимость крупных капиталовложений для переоборудования телефонных АТС и каналов связи привели к тому, что процесс развития данной технологии затянулся на многие годы, и даже сейчас, когда прошло уже более 15 лет, распространенность сетей ISDN в нашей стране оставляет желать лучшего. Дольше всего в национальном масштабе эти сети работают в таких странах, как Германия и Франция.

Если судить о тех или иных типах глобальных сетей по коммуникационному оборудованию для корпоративных сетей, то может сложиться ложное впечатление, что технология ISDN появилась где-то в 1994-95 годах, так как именно в эти годы начали появляться первые маршрутизаторы, поддерживающие технологию ISDN.

Архитектура сети ISDN предусматривает несколько видов служб:

    n некоммутируемые средства (выделенные цифровые каналы);

    n коммутируемая телефонная сеть общего пользования;

    n сеть передачи данных с коммутацией каналов;

    n сеть передачи данных с коммутацией пакетов;

    n сеть передачи данных с трансляцией кадров;

    n средства контроля и управления работой сети.

Как видно из приведенного списка, транспортные службы сетей ISDN действительно поддерживают очень широкий спектр услуг, включая популярные услуги frame relay. Кроме того, большое внимание уделено средствам контроля сети, которые позволяют маршрутизировать вызовы для установления соединения с абонентом сети, а также осуществлять мониторинг и управление сетью. Управляемость сети обеспечивается интеллектуальностью коммутаторов и конечных узлов сети, поддерживающих стек протоколов, в том числе и специальных протоколов управления.

    Заметка

T1 - это системы (каналы), которые имеют пропускную способность, соответствующую 24 аналоговым каналам с полосой 0-3.3 кГц (американская версия стандарта). Частота бит в канале Т1 составляет 193*8000=1,554 Мбит/с (это стандарт США). Его европейский аналог - Е1 имеет 32 канала (30B+D+H) и пропускную способность 2048 кбит/c. В ISDN каналы 1,544 и 2,048 Мбит/с, форматы которых здесь описаны, называются первичными. вСкорости передачи 1,544 (кодирование B8ZS) и 2,048 Мбит/с (HDB3) называются первичными скоростями.

Опишем основные элементы системы передачи данных на основе SDH, или функциональные модули SDH. Эти модули могут быть связаны между собой в сеть SDH. Логика работы или взаимодействия модулей в сети определяет необходимые функциональные связи модулей - топологию, или архитектуру сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяеться основными функциональными задачами, решаемыми сетью:

    сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами - ТМ сети доступа;

    транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода - ADM, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;

    перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов - DXC;

    объединение нескольких однотипных потоков в распределительный узел - концентратор (или хаб) - задача концентрации, решаемая концентраторами;

    восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие растояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов;

    сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.

2. Функциональные модули сетей sdh

Мультиплексор.

Основным функциональным модулем сетей SDH является мультиплексор. Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. они являются универсальными и гибкими устройствами, позволяющие решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять задачи коммутации, концентрации и регенерации. Это оказываеться возможным в силу модульной конструкции SDH мультиплексора - SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включённых в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода.

Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис. 6). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса.

Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис. 6). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал предачи еа обоих сторонах ("восточный" и "западный") в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.

Рисунок 5.1 - Синхронный мультиплексор (SMUX): терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM.

Регенератор представляет собой вырожденный случай мультиплексора, имеющего один входной канал - как правило, оптический триб STM-N и один или два агрегатных выхода (рис. 7). Он используется для увеличения допустимого растояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это растояние составляет 15 - 40 км. для длины волны порядка 1300 нм или 40 - 80 км. - для 1500 нм.

Рисунок 5.2 - Мультиплексор в режиме регенератора

Концентраторы

Концентратор (хаб) используется в топологических схемах типа "звезда", представляет собой мультиплексор, объединяющий несколько, как правило однотипных (со стороны входных портов) потоков, поступающих от удаленных узлов сети в один распределительный узел сети SDH, не обязательно также удаленный, но связанный с основной транспортной сетью.

Этот узел может также иметь не два, а три, четыре или больше линейных портов типа STM-N или STM-N-1 (рис. 5.3) и позволяет организовать ответвление от основного потока или кольца (рис. 5.3а), или, наоборот, подключение двух внешних ветвей к основному потоку или кольцу (рис.5.3) или, наконец, подключение нескольких узлов ячеистой сети к кольцу SDH (рис. 5.3в). В общем случае он позволяет уменьшить общее число каналов, подключенных непосредственно к основной транспортной сети SDH. Мультиплексор распределительного узла в порте ответвления позволяет локально коммутировать подключенные к нему каналы, давая возможность удаленным узлам обмениваться через него между собой, не загружая трафик основной транспортной сети.

Рисунок 5.3 – Синхронный мультиплексор в режиме концентратора

Коммутатор .Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рис. 8, например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возиожность коммутировать собственные каналы доступа, (рис. 9), что равносильно локальной коммутации каналов. На мультиплексоры, например, можно возложить задачи локальной коммутации на уровне однотипных каналов доступа, т.е. задачи, решаемые концентраторами (рис. 9).

В общем случае приходиться использовать специально разработанные синхронные коммутаторы - SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис.3.5). Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладываетограничений на процесс обработки других групп TU. такая коммутация называется неблокирующей.

Рисунок 8 - Мультиплексор ввода/вывода в режиме внутреннего коммутатора.

Рисунок 9 - Мультиплексор ввода/вывода в режиме локального коммутатора.

Рисунок 10 - Общий или проходной коммутатор высокоскоростных каналов

Можно выделить шесть различных функций, выполняемых коммутатором:

Маршрутизация (routing) виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера;

Консолидация или объединение (consolidation/hubbing) виртуальных контейнеров VC, проводимая в режиме концентратора/хаба;

Трансляция (translation) потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи "точка - мультиточка";

Сортировка или перегрупировка (drooming) виртуальных контейнеров VC, осуществляемая с целью создания несколких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор;

Доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования;

Ввод/вывод (drop/insert) виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

«Транспорт-S1» - полнофункциональный SDH-мультиплексор, предназначенный для построения транспортных сетей SDH уровня STM-1. Мультиплексор может работать по одному или двум одномодовым или многомодовым оптическим волокнам.

Основные особенности.

Надежность - средний срок наработки на отказ более 20 лет, гарантия - 3 года.

Блоки питания и тракты E1 выдерживают разряды статического электричества 50 кВ, без изменения параметров.

Удобство монтажа - все разъемы, включая предохранители и болт заземления, выведены на переднюю панель.

Реализация трактов E1 обладает пониженным значением джиттера, что обеспечивает соблюдение норм для E1, при дрейфе синхронизации и даже при нарушении синхронизации системы SТМ-1 . Система коммутации сохраняет работоспособность даже при нарушении синхронизации. Например, вполне работоспособным будет вариант из нескольких пунктов связи, в каждом из которых изделие будет работать со своей частотой.

Возможно конструктивное исполнение мультиплексора для работы по одному волокну.

Технические характеристики.

Топология:

Точка-точка, кольцо, цепь

Линейные интерфейсы:

Тип интерфейса

E1

Ethernet 10/100BaseT

STM-1

Дополнительный Ethernet 10/100BaseT

рек. ITU-T G.703

протокол GFP,

поддержка VCAT, LCAS

рек. ITU-T
G.957/G.958

Поддерживает передачу любых пакетов, в т.ч. и VLAN. Можно использовать для управления внешним оборудованием.

Количество интерфейсов

21 ... 63

1 ... 18

Скорость передачи, Мбит/с

2,048

n*VC12, где n=1..21

155, 520

0,192 (DCCR)

2,048 (VC-12,Е1)

48, 384 (VC-3)

Линейный код

HDB3

NRZ

Импеданс, Ом

120

Кол-во мест под платы расширения

Управление:

Порт управления

TCP/IP, 10/100BaseT

Интерфейс нижнего уровня

Vt100, X-modem, TelNet. Используя интерфейс нижнего уровня, пользователь может адаптировать «Транспорт-S1» к своей системе управления, или написать собственное программное обеспечение

Интерфейс верхнего уровня

Программное обеспечение: «Центр управления "Транспорт-S1» разработки «1РТК».

Каналы удаленного доступа

VC-12 или DCCM, прозрачность неиспользуемого канала

Синхронизация:

Источники синхронизации

L1.1, L1.2, любой из потоков Е1, от входа внешней синхронизации 2048 кГц

Вход внешней синхронизации

Выход внешней синхронизации

2048 кГц, рек. ITU-T G.703.10 (120 Ом сбалансированный)

Управление синхронизацией

Поддержка SSM

Матрица коммутации:

Емкость

252х252 VC-12, 12х12 VC-3

Вид защиты

SNCP 1+1 на уровне VC-12

Обслуживание станционной сигнализации:

1 вход для внешних аварийных сигналов

Гальванически развязанный датчик напряжения

1 выход к станционной сигнализации

Релейный контакт

Интерфейс служебной связи:

Тип интерфейса

FxS, FxO, канал ТЧ (RJ-11)

Скорость передачи

64 кбит/с

Требования к электропитанию:

Напряжение электропитания

60 В (диапазон -36 ... 72 В) постоянного тока и 220 В переменного тока 50 Гц.

Возможность включения от двух источников одновременно.

Потребляемая мощность

до 45 Вт

Габариты:

Корпус для 19” стойки (ВхШхГ), мм

56х482х282

Условия эксплуатации:

Температурный диапазон работы

5 ... +40°С

Относительная влажность

< 85% при t = +25°С

Характеристика оптического интерфейса STM-1 в соответствии с рек. ITU-T G.957 и G.958 (работа по 2-м оптическим волокнам).

Тип оптического интерфейса

L1.1

Оптический разъем

Оптический передатчик

1310

(1550 c DFB лазером - опционально по спецзаказу)

Средняя мощность передачи, дБм

Оптический приемник

Чувствительность приемника при коэффициенте ошибок 10 -10, дБм

0 ... 80

Максимальная расчетная длина ВОЛС, при использовании стандартного оптического передатчика с лазером на 1310 нм, км

Максимальная расчетная длина ВОЛС, при использовании оптического передатчика с DFB лазером на 1550 нм, км

Характеристика оптического интерфейса STM-1 с модулем WDM (работа по одному оптическому волокну)

Тип оптического интерфейса

нет

Оптический разъем

Оптический передатчик

Направление передачи

Запад

Восток

Диапазон рабочих длин волн, нм

1550

1310

Средняя мощность передачи, включая запас на старение: максимум, дБм минимум, дБм

Оптический приемник

Чувствительность приемника при коэффициентe ошибок 10 -10, дБм

Максимальный уровень, допустимый на входе, дБм

Длина волоконно-оптической линии связи (ВОЛС), включая 2 дБ на соединения и запас на восстановление волоконно-оптического кабеля (ВОК), км

0 ... 60

Состав оборудования. Конструктивное исполнение. Назначение.

Код заказа

Название продукции

Назначение

РТК.36.1

Базовый модуль №1 с двумя оптическими приемопередатчиками, каждый работает по двум волокнам

Базовый модуль №1 содержит:

Источник питания от постоянного напряжения от -36 В до - 72 В и от переменного напряжения 220 В 50 Гц;

Два оптических приемопередатчика, работающих по двум одномодовым или

Многомодовым волокнам с лазерами на 1310 нм или на 1550 нм;

Систему индикации;

РТК.36.2

Базовый модуль №2 с двумя оптическими приемопередатчиками, каждый работает по одному волокну, с лазерами на 1550 нм и на 1310 нм

Базовый модуль №2 содержит:

Источник питания от постоянного напряжения от -36 В до -72 В и от переменного напряжения 220 В 50Гц;

Два оптических приемопередатчика, работающих по одному одномодовому или

Многомодовому волокну с лазерами на 1310 нм и на 1550 нм;

Центральный процессор и полнодоступный кросс-коммутатор потоков Е1;

Интерфейс дополнительного потока Ethernet;

Интерфейс Ethernet для контроля и управления аппаратурой;

Систему индикации;

3 слота для подключения плат модулей расширений;

1 слот для подключения платы служебной связи

РТК.36.3

Модуль расширения на 21 поток Е1

Выделение 21 потока Е1 из группового потока

РТК.35.36

Модуль расширения на 6 портов Ethernet 10/100 Base-T

Выделение 6 портов Ethernet из группового потока. Пропускная способность каждого порта задается индивидуально, в пределах N*2,048 Мбит/с, N=1..21 с учетом условия, что пропускная способность всех 6 портов не должна превышать 21*2,048 Мбит/с

РТК.35.43

Модуль служебной связи и канала ТЧ

1 канал с интерфейсом задаваемым пользователем:

FxS (абонентский комплект);

FxO (станционный комплект);

Канал ТЧ 2-х проводной.

Канал используется для организации внутренней связи между полукомплектами аппаратуры, с использованием обычного телефонного аппарата, или для связи любого полукомплекта с офисной АТС и ТФОП, или специальным каналом связи

РТК.35.41

Модуль передачи данных, содержащий 2 канальных окончания, каждое из которых поддерживает работу следующих интерфейсов: V.35; V.36; X.21; RS-530A; RS-530; RS-232С/V.24/V.28

Модуль передачи данных поддерживает следующие последовательные интерфейсы V.35; V.36; X.21; RS-530A; RS-530; RS-232С/V.24/V.28. Выбор скорости передачи и типа интерфейса каждого канала производится пользователем программно

РТК.35.45

Заглушка модуля служебной связи

Предназначена для закрытия модуля служебной связи, если он не используется

РТК.35.46

Заглушка модуля расширения

Предназначена для закрытия пустых мест для модулей расширения

Гарантия.

Гарантийный срок в России: 3 года с момента отгрузки.

В течение этого срока мы гарантируем бесплатный ремонт вышедшего из строя оборудования и бесплатное обновление программного обеспечения.

SDH изначально создавалась для передачи большого числа относительно низкоскоростных цифровых каналов (Е1, Е2, ЕЗ). Однако в новых поколениях SDH реализованы методы (сцепка виртуальных контейнеров), позволяющие передавать и высокоскоростные потоки любого трафика (ATM, IP) на скоростях вплоть до 10 Гбит/с. За счет этого TDM-трафик телефонных сетей и трафик данных передаются интегрировано и оборудование SDH приобрело мультисервисные свойства. Немаловажное значение имеет высокая отказоустойчивость и малое время восстановления работоспособности SDH-сетей.

Технология получила массовое распространение - на сегодняшний день в мире построено более 150 тыс. сетей SDH и около 150 тыс. сетей SONET в США. Таким образом, SDH можно считать доминирующей технологией в магистральных сетях и сетях масштаба города (Metropolitan Access Network - MAN). Дополнительным достоинством SDH является существенное снижение стоимости решений, которое произошло в результате наращивания объемов производства этого оборудования.

1. Цифровая первичная сеть - принципы построения и тенденции развития

Первичной сетью называется совокупность типовых физических цепей, типовых каналов передачи и сетевых трактов системы электросвязи, образованная на базе сетевых узлов, сетевых станций, оконечных устройств первичной сети и соединяющих их линий передачи системы электросвязи. В основе современной системы электросвязи лежит использование цифровой первичной сети, основанной на использовании цифровых систем передачи. Как следует из определения, в состав первичной сети входит среда передачи сигналов и аппаратура систем передачи. Современная первичная сеть строится на основе технологии цифровой передачи и использует в качестве сред передачи электрический и оптический кабели и радиоэфир.

Рассмотрим ту часть первичной, которая связана с передачей информации в цифровом виде. Как видно из рис. 1.1, современная цифровая первичная сеть может строиться на основе трех технологий: PDH, SDH и ATM.

Рис. 1.1. Место цифровой первичной сети в системе электросвязи

Первичная цифровая сеть на основе PDH/SDH состоит из узлов мультиплексирования (мультиплексоров), выполняющих роль преобразователей между каналами различных уровней иерархии стандартной пропускной способности (ниже), регенераторов, восстанавливающих цифровой поток на протяженных трактах, и цифровых кроссов, которые осуществляют коммутацию на уровне каналов и трактов первичной сети. Схематично структура первичной сети представлена на рис. 1.2. Как видно из рисунка, первичная сеть строится на основе типовых каналов, образованных системами передачи. Современные системы передачи используют в качестве среды передачи сигналов электрический и оптический кабель, а также радиочастотные средства (радиорелейные и спутниковые системы передачи). Цифровой сигнал типового канала имеет определенную логическую структуру, включающую цикловую структуру сигнала и тип линейного кода. Цикловая структура сигнала используется для синхронизации, процессов мультиплексирования и демультиплексирования между различными уровнями иерархии каналов первичной сети, а также для контроля блоковых ошибок. Линейный код обеспечивает помехоустойчивость передачи цифрового сигнала. Аппаратура передачи осуществляет преобразование цифрового сигнала с цикловой структурой в модулированный электрический сигнал, передаваемый затем по среде передачи. Тип модуляции зависит от используемой аппаратуры и среды передачи.

Рис. 1.2. Структура первичной сети.

Таким образом, внутри цифровых систем передачи осуществляется передача электрических сигналов различной структуры, на выходе цифровых систем передачи образуются каналы цифровой первичной сети, соответствующие стандартам по скорости передачи, цикловой структуре и типу линейного кода.

Обычно каналы первичной сети приходят на узлы связи и оканчиваются в линейно-аппаратном цехе (ЛАЦе), откуда кроссируются для использования во вторичных сетях. Можно сказать, что первичная сеть представляет собой банк каналов, которые затем используются вторичными сетями (сетью телефонной связи, сетями передачи данных, сетями специального назначения и т.д.). Существенно, что для всех вторичных сетей этот банк каналов един, откуда и вытекает обязательное требование, чтобы каналы первичной сети соответствовали стандартам.

Cовременная цифровая первичная сеть строится на основе трех основных технологий: плезиохронной иерархии (PDH), синхронной иерархии (SDH) и асинхронного режима переноса (передачи) (ATM). Из перечисленных технологий только первые две в настоящее время могут рассматриваться как основа построения цифровой первичной сети.

Технология ATM как технология построения первичной сети является пока молодой и до конца не опробованной. Эта технология отличается от технологий PDH и SDH тем, что охватывает не только уровень первичной сети, но и технологию вторичных сетей (рис. 1.1), в частности, сетей передачи данных и широкополосной ISDN (B-ISDN). В результате при рассмотрении технологии ATM трудно отделить ее часть, относящуюся к технологии первичной сети, от части, тесно связанной со вторичными сетями.

Рассмотрим более подробно историю построения и отличия плезиохронной и синхронной цифровых иерархий. Схемы ПЦС были разработаны в начале 80х. Всего их было три: 1) принята в США и Канаде, в качестве скорости сигнала первичного цифрового канала ПЦК (DS1) была выбрана скорость 1544 кбит/с и давала последовательность DS1 - DS2 - DS3 - DS4 или последовательность вида: 1544 - 6312 - 44736 - 274176 кбит/с. Это позволяло передавать соответственно 24, 96, 672 и 4032 канала DS0 (ОЦК 64 кбит/с); 2) принята в Японии, использовалась та же скорость для DS1; давала последовательность DS1 - DS2 - DSJ3 - DSJ4 или последовательность 1544 - 6312 - 32064 - 97728 кбит/с, что пзволяло передавать 24, 96, 480 или 1440 каналов DS0; 3) принята в Европе и Южной Америке, в качестве превичной была выбрана скорость 2048 кбит/с и давала последовательность E1 - E2 - E3 - E4 - E5 или 2048 - 8448 - 34368 - 139264 - 564992 кбит/с. Указанная иерархия позволяла передавать 30, 120, 480, 1920 или 7680 каналов DS0.

Комитетом по стандартизации ITU - T был разработан стандарт, согласно которому: -- во-первых, были стандартизированы три первых уровня первой иерархии, четыре уровня второй и четыре уровня третьей иерархии в качестве основных, а также схемы кросс-мультиплексирования иерархий; -- во-вторых,последние уровни первой и третьей иерархий не были рекомендованы в качестве стандартных.

Указанные иерархии, известные под общим названием плезиохронная цифровая иерархия PDH, или ПЦИ, сведены в таблицу 1.1.

Таблица 1.1.Три схемы ПЦС: АС-американская; ЯС-японская; ЕС-европейская.

Но PDH обладала рядом недостатков, а именно: -- затруднённый ввод/вывод цифровых потоков в промежуточных пунктах; -- отсутствие средств сетевого автоматического контроля и управления; -- многоступенчатое востановление синхронизма требует достаточно большого времени; Также можно считать недостатком наличие трёх различных иерархий.

Указанные недостатки PDH, а также ряд других факторов привели к разработке в США ещё одной иерархии - иерархии синхронной оптической сети SONET, а в Европе аналогичной синхронной цифровой иерархии SDH, предложенными для использования на волоконно-оптических линиях связи(ВОЛС).Но из-за неудачно выбранной скорости предачи для STS-1 , было принято решение -- отказаться от создания SONET, а создать на её основе SONET/SDH со скоростью передачи 51.84 Мбит/с первого уровня ОС1 этой СЦИ. Врезультате OC3 SONET/SDH соответствовал STM-1 иерархии SDH.Скорости передач иерархии SDH представлены в таблице 1.2.

Таблица 1.2.Скорости передач иерархии SDH.

Иерархии PDH и SDH взаимодействуют через процедуры мультиплексирования и демультиплексирования потоков PDH в системы SDH.

Основным отличием системы SDH от системы PDH является переход на новый принцип мультиплексирования. Система PDH использует принцип плезиохронного (или почти синхронного) мультиплексирования, согласно которому для мультиплексирования, например, четырех потоков Е1 (2048 кбит/с) в один поток Е2 (8448 кбит/с) производится процедура выравнивания тактовых частот приходящих сигналов методом стаффинга. В результате при демультиплексировании необходимо производить пошаговый процесс восстановления исходных каналов. Например, во вторичных сетях цифровой телефонии наиболее распространено использование потока Е1. При передаче этого потока по сети PDH в тракте ЕЗ необходимо сначала провести пошаговое мультиплексирование Е1-Е2-ЕЗ, а затем - пошаговое демультиплексирование ЕЗ-Е2-Е1 в каждом пункте выделения канала Е1.

В системе SDH производится синхронное мультиплексирование/демультиплексирование, которое позволяет организовывать непосредственный доступ к каналам PDH, которые передаются в сети SDH. Это довольно важное и простое нововведение в технологии привело к тому, что в целом технология мультиплексирования в сети SDH намного сложнее, чем технология в сети PDH, усилились требования по синхронизации и параметрам качества среды передачи и системы передачи, а также увеличилось количество параметров, существенных для работы сети. Как следствие, методы эксплуатации и технология измерений SDH намного сложнее аналогичных для PDH.

Международным союзом электросвязи ITU-T предусмотрен ряд рекомендаций, стандартизирующих скорости передачи и интерфейсы систем PDH, SDH и ATM, процедуры мультиплексирования и демультиплексирования, структуру цифровых линий связи и нормы на параметры джиттера и вандера (рис- 1.3).

Рис. 1.3. Стандарты первичной цифровой сети, построенной на основе технологий PDH, SDH и ATM.

Рассмотрим основные тенденции в развитии цифровой первичной сети.В настоящий момент очевидной тенденцией в развитии технологии мультиплексирования на первичной сети связи является переход от PDH к SDH. Если в области средств связи этот переход не столь явный (в случае малого трафика по-прежнему используются системы PDH), то в области эксплуатации тенденция к ориентации на технологию SDH более явная. Операторы, создающие большие сети, уже сейчас ориентированы на использование технологии SDH.Следует также отметить, что SDH дает возможность прямого доступа к каналу 2048 кбит/с за счет процедуры ввода/вывода потока Е1 из трактов всех уровней иерархии SDH. Канал Е1 (2048 кбит/с) является основным каналом, используемым в сетях цифровой телефонии, ISDN и других вторичных сетях.

2. Технология SDH

Особенности технологии SDH: предусматривает синхронную передачу и мультиплексирование. Элементы первичной сети SDH используют для синхронизации один задающий генератор, как следствие, вопросы построения систем синхронизации становятся особенно важными;

Предусматривает прямое мультиплексирование и демультиплексирование потоков PDH, так что на любом уровне иерархии SDH можно выделять загруженный поток PDH без процедуры пошагового демультиплексирования. Процедура прямого мультиплексирования называется также процедурой ввода-вывода;

Опирается на стандартные оптические и электрические интерфейсы, что обеспечивает лучшую совместимость оборудования различных фирм-производителей;

Позволяет объединить системы PDH европейской и американской иерархии, обеспечивает полную совместимость с существующими системами PDH и, в то же время, дает возможность будущего развития систем передачи, поскольку обеспечивает каналы высокой пропускной способности для передачи ATM, MAN и т.д.;

Обеспечивает лучшее управление и самодиагностику первичной сети. Большое количество сигналов о неисправностях, передаваемых по сети SDH, дает возможность построения систем управления на основе платформы TMN.Технология SDH обеспечивает возможность управления сколь угодно разветвленной первичной сетью из одного центра.

Выделим общие особенности построения синхронной иерерхии:

Поддержка в качестве входных сигналов каналов доступа только трибов(прим. от trib, tributary - компонентный сигнал, подчинённый сигнал или нагрузка, поток нагрузке) PDH и SDH;

Трибы должны быть упакованы в стандартные помеченные контейнеры, размеры которых определяются уровнем триба в иерархии PDH;

Положение виртуального контейнера может определяться с помощью указателей, позволяющих устранить противоречие между фактом синхронности обработки и возможным изменением положения контейнера внутри поля полезной нагрузки;

Несколько контейнеров одного уровня могут быть сцепленывместе и рассматриваться как один непрерывный контейнер, используемый для размещения нестандартной полезной нагрузки;

Предусмотрено формирование отдельного поля заголовков размером 81 байт.

Иерархия SDH включает в себя несколько уровней STM. В качестве примера использования уровней в сети SDH на рис.2.1 показана первичная сеть SDH, включающая кольца магистральной сети, построенной на потоках STM-16, региональных сетей, построенных на потоках STM-4,и локальных сетей с потоками STM-1.

Рис.2.1. Пример первичной сети, построенной на технологии SDH

В процессе внедрения технологии SDH на первом этапе вероятно появление комбинированных сетей SDH/PDH. Технология SDH внедряется обычно в виде "островов", объединенных каналами существующей первичной сети (рис. 2.2). На втором этапе "острова" объединяются в первичную сеть на основе SDH. В результате на современном этапе необходимо не только рассматривать технологию SDH, но и ориентироваться на изучение комбинированных сетей и процессов взаимодействия SDH и PDH.

Рис.2.2.Пример комбинированной первичной сети PDH/SDH

3. Состав сети SDH. Топология и архитектура

Состав сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяеться основными функциональными задачами, решаемыми сетью:

Сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами - ТМ сети доступа;

Транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода - ADM, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;

Перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов - DXC;

Объединение нескольких однотипных потоков в распределительный узел - концентратор (или хаб) - задача концентрации, решаемая концентраторами;

Восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие растояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов - устройств, аналогичных повторителям в LAN;

Сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.

Мультиплексор. Основным функциональным модулем сетей SDH является мультиплексор.

Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. они являются универсальными и гибкими устройствами, позволяющие решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять задачи коммутации, концентрации и регенерации. Это оказываеться возможным в силу модульной конструкции SDH мультиплексора - SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включённых в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода. Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис.3.1.). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса. Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис.3.1.). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал предачи еа обоих сторонах ("восточный" и "западный") в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.

Рис. 3.1.Синхронный мультиплексор (SMUX):

терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM.

Регенератор представляет собой вырожденный случай мультиплексора, имеющего один входной канал - как правило, оптический триб STM-N и один или два агрегатных выхода (рис.3.2.). Он используется для увеличения допустимого растояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это растояние составляет 15 - 40 км. для длины волны порядка 1300 нм или 40 - 80 км. - для 1500 нм.

Рис. 3.2.Мультиплексор в режиме регенератора.

Коммутатор. Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рис.3.3., например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возиожность коммутировать собственные каналы доступа, (рис.3.4.), что равносильно локальной коммутации каналов. На мультиплексоры, например, можно возложить задачи локальной коммутации на уровне однотипных каналов доступа, т.е. задачи, решаемые концентраторами (рис.3.4.). В общем случае приходиться использовать специально разработанные синхронные коммутаторы - SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис.3.5). Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладываетограничений на процесс обработки других групп TU. такая коммутация называется неблокирующей.

Рис. 3.3.Мультиплексор ввода/вывода в режиме внутреннего коммутатора.

Рис. 3.4.Мультиплексор ввода/вывода в режиме локального коммутатора.

Рис. 3.5.Общий или проходной коммутатор высокоскоростных каналов.

Можно выделить шесть различных функций, выполняемых коммутатором:

Маршрутизация (routing) виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера;

Консолидация или объединение (consolidation/hubbing) виртуальных контейнеров VC, проводимая в режиме концентратора/хаба;

Трансляция (translation) потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи "точка - мультиточка";

Сортировка или перегрупировка (drooming) виртуальных контейнеров VC, осуществляемая с целью создания несколких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор;

Доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования;

Ввод/вывод (drop/insert) виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

Топология сети SDH.

Топология "точка-точка".

Сегмент сети, связывающий два узла A и B, или топология "точка - точка", является наиболее простым примером базовой топологии SDH сети (рис.3.6.). Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резирвирования канала приёма/передачи, так и по схеме со стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приёма/передачи).

Рис. 3.6.Топология "точка-точка", реализованная с использованием ТМ.

Топология "последовательная линейная цепь".

Эта базовая топология используеться тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек линии, где могут вводиться каналы доступа. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, как на рис.3.7., либо более сложной цепью с резервированием типа 1+1. Последний вариант топологии часто называют "упрощённым кольцом".

Рис. 3.7.Топология "последовательная линейная цепь", реализованная на ТМ и TDM.

Топология "звезда", реализующая функцию концентратора.

В этой топологии один из удалённых узлов сети, связанный с центром коммутации или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть трафика может быть выведена на терминалы пользователя, тогда как оставшаяся его часть может быть распределена по другим удалённым узлам (рис.3.9.)

Рис. 3.9.Топология "звезда" c мультиплексором в качестве концентратора.

Топология "кольцо".

Эта топология (рис.3.10.) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное приемущество этой топологии - лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток - запад, дающих возможность формирования двойного кольца со встречными потоками.

Рис. 3.10.Топология "кольцо" c защитой 1+1.

Линейная архитектура для сетей большой протяженности.

Для линейных сетей большой протяженности растояние между терминальными мультиплексорами больше или много больше того растояния, которое может быть рекомендованно с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте между ТМ (рис.3.14) должны быть установленны кроме мультиплексоров и проходного коммутатора ещё и регенераторы для востановления затухающего оптического сигнала. Эту линеёную архитектуру можно представить в виде последовательного соединения ряда секций, специфицированных в рекомендациях ITU-T G.957 и ITU-T G.958.

Рис. 3.14.Сеть SDH большой протяженности со связью типа "точка-точка" и её сегментация.

В процессе развития сети SDH разработчики могут использовать ряд решений, характерных, для глобальных сетей, таких как формирование своего "остова" (backbone) или магистральной сети в виде ячеистой (mush) структуры, позволяющей организовать альтернативные (резервные) маршруты, используемые в случае возникновения проблем при маршрутизации виртуальных контейнеров по основному пути. Это наряду с присущими сетям SDH внутренним резирвированием, позволяет повысить надёжность всей сети в целом. Причём при таком резервировании на альтернативных маршрутах могут быть использовнны альтернативные среды распространения сигнала.

Методы контроля чётности и определения ошибок в системе SDH

В системе SDH используется метод контроля параметров ошибки без отключения канала, который получил название метода контроля четности (Bit Interleaved Parity - В1Р). Этот метод, также как и CRC, является оценочным, но он дает хорошие результаты при анализе систем передачи SDH. Алгоритм контроля четности достаточно прост (рис.5.1). Контроль четности выполняется для конкретного блока данных цикла в пределах групп данных по 2, 8 и 24 бита (BIP-2, BIP-8 и В1Р-24 соответственно). Эти группы данных организуются в столбцы, затем для каждого столбца рассчитывается его четность, т.е. четное или нечетное количество единиц в столбце. Результат подсчета передается в виде кодового слова на приемную сторону. На приемной стороне делается аналогичный расчет, сравнивается с результатом и делается вывод о количестве ошибок четности. Результат сравнения передается в направлении, обратном передаче потока.

Рис.5.1.Алгоритм контроля чётности.

Метод контроля четности является оценочным, поскольку несколько ошибок могут компенс ровать друг друга в смысле контроля четности, однако этот метод дает приемлемый уровень оценки качества цифровой системы передачи. Поскольку технология SDH предусматривает создание секционных заголовков и заголовк пути, метод контроля четности дает возможность тестирования параметров цифровой системы передачи от секции к секции и от начала до конца маршрута. Для этого используются специальные байты (см. выше) в составе заголовков SОН и РОН. Например, количество ошибок, обнаруженно в канале В3 передается в байте G1 РОН VC-4 следующего цикла. На рис.5.2 представлена cxема посекционного мониторинга параметра ошибки BIP. Используемые для контроля четности байты связанные с ними участки цифровой системы передачи приведены в табл.5.1.

Литература

И.Г.Бакланов "Технологии измерений первичной сети. Часть 1. Системы Е1,PDH, SDH."; ЭКО-ТРЕНДЗ, 2000