Вынесение общего множителя за скобки. Урок алгебры

Урок алгебры в 7 классе.

Тема « Вынесение общего множителя за скобки».

Учебник Макарычев Ю.Н., Миндюк Н.Г. и др.

Цели урока:

Образовательная

    выявить уровень овладения учащимися комплекса знаний и умений по применению навыков умножения и деления степеней;

    формировать умение применять разложение многочлена на множители с помощью вынесения общего множителя за скобки;

    применять вынесение общего множителя за скобки при решении уравнений.

Развивающая

    способствовать развитию наблюдательности, умения анализировать, сравнивать, делать выводы;

    развивать навыки самоконтроля при выполнении заданий.

Воспитательная -

    воспитание ответственности, активности, самостоятельности, объективной самооценки.

Тип урока: комбинированный.

Основные результаты обучения:

    уметь выносить общий множитель за скобки;

    уметь применять данный способ при решении упражнений.

Ход урока.

1 модуль (30 мин).

1. Организационный момент.

    приветствие;

    подготовка обучающихся к работе.

2. Проверка домашнего задания.

    Проверка наличия (дежурные), обсуждение возникших вопросов.

3 . Актуализация опорных знаний.

    Н айдите НОД (15,6), (30,60), (24,8), (4,3), (20,55) , (16, 12).

    Что такое НОД?

Как выполняется деление степеней с одинаковыми основаниями?

Как выполняется умножение степеней с одинаковыми основаниями?

Для данных степеней (c 3) 7 ,b 45 ,c 5 , a 21 , a 11 b 7 ,d 5 Назовите степень с наименьшим показателем, одинаковыми основаниями, одинаковыми показателями

Повторим распределительный закон умножения. Запишите его в буквенной форме

а (в + с)= ав + ас

* - знак умножения

Выполнить устные задания на применение распределительного свойства. (Подготовить на доске).

1) 2*(а + в) 4) (х – 6)*5

2) 3*(х – у) 5) -4*(у + 5)

3) а*(4 + х) 6) -2*(в – а)

На закрытой доске записаны задания, ребята решают и записывают на доске результат. Задания на умножения одночлена на многочлен.

Для начала я предлагаю вам пример на умножение одночлена на многочлен:

2 х (х 2 +4 х у – 3)= 2х 3 + 8х 2 у – 6х Не стираем!

Написать правило умножения одночлена на многочлен в виде схемы.

На доске появляется запись:

Я могу написать это свойство в виде:

В таком виде мы уже использовали запись для простого способа вычисления выражений.

а) 23 * 15 + 15 * 77 = (23 + 77) * 15 = 100 * 15 = 1500

Остальные устно, проверить ответы:

е) 55*682 – 45*682 = 6820

ж) 7300*3 + 730*70 = 73000

з) 500*38 – 50*80 = 15000

Какой закон помог вам найти простой способ вычислений? (Распределительный)

Действительно – распределительный закон помогает упрощать выражения.

4 . Постановка цели и темы урока. Устный счет. Отгадайте тему урока.

Работа в парах.

Карточки для пар.

Оказывается, что разложение на множители выражения – это операция, обратная почленному умножению одночлена на многочлен.

Рассмотрим тот же самый пример, который решал учащийся, но в обратном порядке. Разложить на множители – значит вынести за скобки общий множитель.

2 х 3 + 8 х 2 у – 6 х = 2 х (х 2 + 4 ху – 3).

Сегодня на уроке мы рассмотрим понятия разложение многочлена на множители и вынесение общего множителя за скобки, научимся применять эти понятия при выполнении упражнений.

Алгоритм вынесения общего множителя за скобки

    Наибольший общий делитель коэффициентов.

    Одинаковые буквенные переменные.

    Проставить наименьшую степень к вынесенным переменным.

    Затем в скобках записывается оставшиеся одночлены многочлена.

Наибольший общий делитель находили в младших класса, общую переменную в наименьшей степени можно сразу увидеть. А чтобы быстро находить оставшийся в скобках многочлен надо потренироваться по номеру №657.

5. Первичное усвоение с проговариванием вслух.

№657 (1 столбик)

2 модуль (30 мин).

1. Итог первой 30-минутки.

А) Какое преобразование называется разложением многочлена на множители?

Б) На каком свойстве основано вынесение общего множителя за скобки?

В) Как выносится общий множитель за скобки?

2. Первичное закрепление.

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

1) 2 х 3 – 3 х 2 – х =х (2 х 2 – 3 х).

2) 2 х + 6 = 2 (х + 3).

3) 8 х + 12 у = 4 (2 х - 3у).

4) а 6 – а 2 = а 2 (а 2 – 1).

5) 4 -2а = – 2 (2 – а).

3. Первичная проверка понимания.

Работа с самопроверкой. 2 чел на обратной стороне

Вынесите общий множитель за скобки:

Устно сделать проверку умножением.

4. Подготовка учащихся к обобщенной деятельности.

Выносим многочленный множитель за скобки (объяснение учителя).

Разложите на множители многочлен .

В данном выражении мы видим, присутствует один и тот же множитель , который можно вынести за скобки. Итак, получим:

Выражения и являются противоположными, поэтому в некоторых случаях можно пользоваться данным равенством . Два раза меняем знак! Разложите на множители многочлен

Здесь присутствуют противоположные выражения и , воспользовавшись предыдущим тождеством мы получим следующую запись: .

А теперь мы видим, что общий множитель можно вынести за скобки.

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.

В ходе различных математических операций при работе с уравнениями и равенствами часто появляется возможность значительно упростить все действия путем вынесения некоего общего множителя за пределы самого выражения. Это позволяет не только сократить большие группы многочлена, но и упростить сам процесс решения.

Вынесение множителя позволяет также избавиться от лишних действий и оптимизировать процесс вычислений. В данном видеоуроке мы подробно изучим возможности процедуры вынесения. Например, рассмотрим выражение следующего вида:

Нам необходимо его преобразовать так, чтобы при известных значениях всех переменных было легко вычислить значение всего полинома. Положим, а=1, с=2, х=5. Обратим внимание, что у обоих членов многочлена есть общая часть - множитель-переменная х. Она легко выносится за скобки, согласно распределительному закону умножения:

ах + сх = х(а + с)

Для нахождения правой части данного равенства необходимо поделить каждый одночлен исходного полинома на утвержденный общий множитель (в этом случае - х), частное записать алгебраической суммой в скобках, а сам множитель поставить перед ними. Руководствуясь заданными значениями переменных, получаем:

ах + сх = х(а + с) = 5(1 + 2) = 15

В видеоуроке сделан акцент, что вынесение множителя за скобки в представленном примере, сократило количество действий по расчету с трех до двух. В более сложных упражнениях эффект упрощения может быть ещё более значителен. А многие уравнения без применения метода вынесения множителя вообще очень сложно решить.

В общем, вынесение общего множителя за скобки в полиномах именуется процессом разложения многочлена на отдельные множители. При этом используется следующий алгоритм для обработки данных:

  1. Выделяется рабочая группа выражения (многочлен);
  2. Осуществляется поиск подходящего множителя, на который можно было бы поделить каждый одночлен;
  3. Производится деление мономов на выделенный множитель, при этом результаты записываются вместо одночленов, как алгебраическая сумма;
  4. Получившийся многочлен заключается в скобки, общий множитель ставится перед ними.

При выборе множителя часто возникают проблемы. Во-первых, он должен отвечать максимальному количеству мономов, в идеале - делить все одночлены. Во-вторых, в комплексных задачах необходимо подбирать такой множитель, чтобы он позволял провести решение всего упражнения дальше, облегчая всю процедуру. Как правило, если нет строгого условия извне (в уравнениях, к примеру), то множитель подбирается по принципам: подходящий всем мономам и являющийся наибольшим по степени и коэффициенту при переменной. Иначе говоря, множитель должен включать все переменные, наибольшую возможную степень, а также наибольший кратный числовой коэффициент. Рассмотрим пример:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2

Вполне очевидно, что в этом выражении для всех одночленов наиболее приемлемым множителем будет переменная х, взятая во второй степени (максимально допустимой) и с числовым коэффициентом, равным 2, т.е. 2х 2:

2х 2 у - 8х 2 у + 4х 2 +4х 3 у 2 = 2х 2 (у - 4у + 2ху 2) = 2х 2 (2ху 2 - 3у)

Производим действия в скобках, получаем итоговый ответ, представляющий собой произведение многочлена на одночлен-множитель.

Рассмотрим ещё один пример. Необходимо преобразовать выражение вида:

2х(4-у) + х(у-4)

С первого взгляда, тут трудно что-либо вынести за скобки, кроме переменной х, вынесение которой создаст двойные скобки и лишь усложнит многочлен, поэтому данный шаг нецелесообразен. Однако следуя стандартной логике и базовым правилам математического сложения, можно уверенно записать, что:

(у-4) = -(4-у)

Если минус у правого выражения внести внутрь, то все внутренние знаки сменятся на противоположные, образуя выражение, полностью идентичное левой части. Поэтому, корректно будет записать:

2х(4-у) + х(у-4) = 2х(4-у) - х(4- у)

Теперь же оба члена многочлена содержат общий множитель (4- у), который легко вынести за скобки, продолжив дальнейшие вычисления:

2х(4-у) - х(4- у) = (4- у)(2х - х) = (4- у)х = 4х - ух

Последние два этапа расчетов не относятся к общей процедуре вынесения множителя, и являются индивидуальным решением данного примера. Сам процесс вынесения дает нам произведение двух элементарных биномов.

Продолжаем разбираться с основами алгебры. Сегодня мы поработаем с , а именно рассмотрим такое действие, как вынесение общего множителя за скобки .

Содержание урока

Основной принцип

Распределительный закон умножения позволяет умножить число на сумму (или сумму на число). Например, чтобы найти значение выражения 3 × (4 + 5) можно умножить число 3 на каждое слагаемое в скобках и сложить полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

Число 3 и выражение в скобках можно поменять местами (это следует из переместительного закона умножения). Тогда каждое слагаемое, которое в скобках, будет умножено на число 3

(4 + 5) × 3 = 4 × 3 + 5 × 3 = 12 + 15

Пока не будем вычислять конструкцию 3 × 4 + 3 × 5 и складывать полученные результаты 12 и 15 . Оставим выражение в виде 3 (4 + 5) = 3 × 4 + 3 × 5 . Ниже оно нам потребуется именно в таком виде, чтобы понять суть вынесения общего множителя за скобки.

Распределительный закон умножения иногда называют внесением множителя во внутрь скобок. В выражении 3 × (4 + 5) множитель 3 был за скобками. Умножив его на каждое слагаемое в скобках, мы по сути внесли его во внутрь скобок. Для наглядности можно так и записать, хоть и не принято так записывать:

3 (4 + 5) = (3 × 4 + 3 × 5)

Поскольку в выражении 3 × (4 + 5) число 3 умножается на каждое слагаемое в скобках, это число является общим множителем для слагаемых 4 и 5

Как говорилось ранее, умножив этот общий множитель на каждое слагаемое в скобках, мы вносим его во внутрь скобок. Но возможен и обратный процесс — общий множитель можно обратно вынести за скобки. В данном случае в выражении 3 × 4 + 3 × 5 общий множитель виден, как на ладони — это множитель 3 . Его и нужно вынести за скобки. Для этого сначала записывается сам множитель 3

и рядом в скобках записывается выражение 3 × 4 + 3 × 5 но уже без общего множителя 3 , поскольку он вынесен за скобки

3 (4 + 5)

В результате вынесения общего множителя за скобки получается выражение 3 (4 + 5) . Это выражение тождественно равно предыдущему выражению 3 × 4 + 3 × 5

3(4 + 5) = 3 × 4 + 3 × 5

Если вычислить обе части полученного равенства, то получим тождество:

3(4 + 5) = 3 × 4 + 3 × 5

27 = 27

Как происходит вынесение общего множителя за скобки

Вынесение общего множителя за скобки по сути является обратной операцией внесению общего множителя во внутрь скобок.

Если при внесении общего множителя внутрь скобок, мы умножаем этот множитель на каждое слагаемое в скобках, то при вынесении этого множителя обратно за скобки, мы должны разделить каждое слагаемое в скобках на этот множитель.

В выражении 3 × 4 + 3 × 5 , которое было рассмотрено выше, так и происходило. Каждое слагаемое было разделено на общий множитель 3 . Произведения 3 × 4 и 3 × 5 и являются слагаемыми, поскольку если их вычислить, мы получим сумму 12 + 15

Теперь мы можем детально увидеть, как происходит вынесение общего множителя за скобки:

Видно, что общий множитель 3 сначала вынесен за скобки, затем в скобках происходит деление каждого слагаемого на этот общий множитель.

Деление каждого слагаемого на общий множитель можно выполнять не только разделяя числитель на знаменатель, как это было показано выше, но и сокращая эти дроби. В обоих случаях получится один и тот же результат:

Мы рассмотрели простейший пример вынесения общего множителя за скобки, чтобы понять основной принцип.

Но не всё так просто, как кажется на первый взгляд. После того, как число умножено на каждое слагаемое в скобках, полученные результаты складывают, и общий множитель пропадает из виду.

Вернёмся к нашему примеру 3 (4 + 5) . Применим распределительный закон умножения, то есть умножим число 3 на каждое слагаемое в скобках и сложим полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

После того, как вычислена конструкция 3 × 4 + 3 × 5 , мы получаем новое выражение 12 + 15 . Видим, что общий множитель 3 пропал из виду. Теперь в полученном выражении 12 + 15 попробуем обратно вынести общий множитель за скобки, но чтобы вынести этот общий множитель его сначала нужно найти.

Обычно при решении задач встречаются именно такие выражения, в которых общий множитель сначала нужно найти, прежде чем его выносить.

Чтобы в выражении 12 + 15 вынести общий множитель за скобки, нужно найти наибольший общий делитель (НОД) слагаемых 12 и 15. Найденный НОД и будет общим множителем.

Итак, найдём НОД слагаемых 12 и 15. Напомним, что для нахождения НОД необходимо разложить исходные числа на простые множители, затем выписать первое разложение и убрать из него множители, которые не входят в разложение второго числа. Оставшиеся множители нужно перемножить и получить искомый НОД. Если испытываете затруднения на этом моменте, обязательно повторите .

НОД слагаемых 12 и 15 это число 3. Данное число является общим множителем слагаемых 12 и 15. Его и нужно выносить за скобки. Для этого сначала записываем сам множитель 3 и рядом в скобках записываем новое выражение, в котором каждое слагаемое выражения 12 + 15 разделено на общий множитель 3

Ну и дальнейшее вычисление не составляет особого труда. Выражение в скобках легко вычисляется — двенадцать разделить на три будет четыре , а пятнадцать разделить на три будет пять :

Таким образом, при вынесении общего множителя за скобки в выражении 12 + 15 получается выражение 3(4 + 5) . Подробное решение выглядит следующим образом:

В коротком решении пропускают запись в которой показано, как каждое слагаемое разделено на общий множитель:

Пример 2. 15 + 20

Наибольший общий делитель слагаемых 15 и 20 это число 5. Данное число является общим множителем слагаемых 15 и 20. Его и вынесем за скобки:

Получили выражение 5(3 + 4).

Получившееся выражение 5(3 + 4) можно проверить. Для этого достаточно умножить пятёрку на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 15 + 20

Пример 3. Вынести общий множитель за скобки в выражении 18 + 24 + 36

Найдём НОД слагаемых 18, 24 и 36. Чтобы найти , нужно разложить эти числа на простые множители, затем найти произведение общих множителей:

НОД слагаемых 18, 24 и 36 это число 6. Данное число является общим множителем слагаемых 18, 24 и 36. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим число 6 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 18 + 24 + 36

Пример 4. Вынести общий множитель за скобки в выражении 13 + 5

Слагаемые 13 и 5 являются простыми числами. Они раскладываются только на единицу и самих себя:

Это значит, что у слагаемых 13 и 5 нет общих множителей, кроме единицы. Соответственно, нет смысла выносить эту единицу за скобки, поскольку это ничего не даст. Покажем это:

Пример 5. Вынести общий множитель за скобки в выражении 195 + 156 + 260

Найдём НОД слагаемых 195, 156 и 260

НОД слагаемых 195, 156 и 260 это число 13. Данное число является общим множителем для слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 13 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 195 + 156 + 260

Выражение, в котором требуется вынести общий множитель за скобки, может быть не только суммой чисел, но и разностью. 16 − 12 − 4. Наибольшим общим делителем чисел 16, 12 и 4 это число 4. Данное число и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим четвёрку на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 16 − 12 − 4

Пример 6. Вынести общий множитель за скобки в выражении 72 + 96 − 120

Найдём НОД чисел 72, 96 и 120

НОД для 72, 96 и 120 это число 24. Данное число является общим множителем слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 24 на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 72+96−120

Общий множитель, выносимый за скобки, может быть и отрицательным. Например, вынесем общий множитель за скобки в выражении −6 − 3. Вынести общий множитель за скобки в таком выражении можно двумя способами. Рассмотрим каждый из них.

Способ 1.

Заменим вычитание сложением:

−6 + (−3)

Теперь находим общий множитель. Общим множителем данного выражения будет наибольший общий делитель слагаемых −6 и −3.

Модуль первого слагаемого это 6. А модуль второго слагаемого это 3. НОД(6 и 3) равен 3. Данное число является общим множителем слагаемых 6 и 3. Его и вынесем за скобки:

Выражение полученное таким способом получилось не очень аккуратным. Много скобок и отрицательных чисел не придают выражению простоту. Поэтому можно воспользоваться вторым способом, суть которого заключается в том, чтобы вынести за скобки не 3, а −3.

Способ 2.

Как и в прошлый раз заменяем вычитание сложением

−6 + (−3)

В этот раз мы вынесем за скобки не 3, а −3

Выражение полученное в этот раз выглядит намного проще. Запишем решение покороче, чтобы сделать его ещё проще:

Разрешать выносить отрицательный множитель за скобки связано с тем, что разложение чисел −6 и (−3) можно записать двумя видами: сначала сделать множимое отрицательным, а множитель положительным:

−6 = −2 × 3

−3 = −1 × 3

во втором случае множимое можно сделать положительным, а множитель отрицательным:

−6 = 2 × (−3)

−3 = 1 × (−3)

А значит мы вольны выносить за скобки тот сомножитель, который захотим.

Пример 8. Вынести общий множитель за скобки в выражении −20 − 16 − 2

Заменим вычитание сложением

−20 − 16 − 2 = −20 + (−16) + (−2)

Наибольшим общим делителем слагаемых −20, −16 и −2 является число 2. Это число является общим множителем этих слагаемых. Посмотрим, как это выглядит:

−20 = −10 × 2

−16 = −8 × 2

−2 = −1 × 2

Но приведенные разложения можно заменить на тождественно равные разложения. Различие будет в том, что общим множителем будет не 2 , а −2

−20 = 10 × (−2)

−16 = 8 × (−2)

−2 = 1 × (−2)

Поэтому для удобства за скобки можно вынести не 2 , а −2

Запишем приведенное решение покороче:

А если бы мы вынесли за скобки 2 , то получилось бы не совсем аккуратное выражение:

Пример 9. Вынести общий множитель за скобки в выражении −30 − 36 − 42

Заменим вычитание сложением:

−30 + (−36) + (−42)

Наибольшим общим делителем слагаемых −30, −36 и −42 это число 6. Данное число является общим множителем для этих слагаемых. Но за скобки мы вынесем не 6, а −6 поскольку числа −30, −36 и −42 можно представить так:

−30 = 5 × (−6)

−36 = 6 × (−6)

−42 = 7 × (−6)

Вынесение минуса за скобки

При решении задач иногда может быть полезным вынесение минуса за скобки. Это позволяет упростить выражение и сделать его проще.

Рассмотрим следующий пример. Вынести минус за скобки в выражении −15 + (−5) + (−3)

Для наглядности заключим данное выражение в скобки, ведь речь идёт о том, чтобы вынести минус за эти скобки

(−15 + (−5) + (−3))

Итак, чтобы вынести минус за скобки, нужно записать перед скобками минус и в скобках записать все слагаемые, но с противоположными знаками. Знаки операций (то есть плюсы) оставляем без изменений:

−(15 + 5 + 3)

Мы вынесли минус за скобки в выражении −15 + (−5) + (−3) и получили −(15 + 5 + 3) . Оба выражения равны одному и тому же значению −23

−15 + (−5) + (−3) = −23

−(15 + 5 + 3) = −(23) = −23

Поэтому между выражениями −15 + (−5) + (−3) и −(15 + 5 + 3) можно поставить знак равенства, потому что они равны одному и тому же значению:

−15 + (−5) + (−3) = −(15 + 5 + 3)

−23 = −23

На самом деле при вынесении минуса за скобки опять же срабатывает распределительный закон умножения:

a(b + c) = ab + ac

Если поменять местами левую и правую часть этого тождества, то получится, что сомножитель a вынесен за скобки

ab + ac = a(b+c)

Тоже самое происходит, когда мы выносим общий множитель в других выражениях и когда выносим минус за скобки.

Очевидно, что при вынесении минуса за скобки, выносится не минус, а минус единица. Ранее мы говорили, что коэффициент 1 принято не записывать.

Поэтому и образуется перед скобками минус, а знаки слагаемых которые были в скобках меняют свой знак на противоположный, поскольку каждое слагаемое разделено на минус единицу.

Вернёмся к предыдущему примеру и детально увидим, как на самом деле выносился минус за скобки

Пример 2. Вынести минус за скобки в выражении −3 + 5 + 11

Ставим минус и рядом в скобках записываем выражение −3 + 5 + 11 с противоположным знаком у каждого слагаемого:

−3 + 5 + 11 = −(3 − 5 − 11)

Как и в прошлом примере, здесь за скобки вынесен не минус, а минус единица. Подробное решение выглядит следующим образом:

Сначала получилось выражение −1(3 + (−5) + (−11)) , но мы раскрыли в нём внутренние скобки и получили выражение −(3 − 5 − 11) . Раскрытие скобок это тема следующего урока, поэтому если данный пример вызывает у вас затруднения, можете пока пропустить его.

Вынесение общего множителя за скобки в буквенном выражении

Выносить общий множитель за скобки в буквенном выражении намного интереснее.

Для начала рассмотрим простейший пример. Пусть имеется выражение 3 a + 2 a . Вынесем общий множитель за скобки.

В данном случае, общий множитель виден невооруженным глазом — это множитель a . Его и вынесем за скобки. Для этого записываем сам множитель a и рядом в скобках записываем выражение 3a + 2a , но уже без множителя a поскольку он вынесен за скобки:

Как и в случае с числовым выражением, здесь происходит деление каждого слагаемого на вынесенный общий множитель. Выглядит это так:

В обеих дробях переменные a были сокращены на a . Вместо них в числителе и в знаменателе получились единицы. Единицы получились по причине того, что вместо переменной a может стоять любое число. Эта переменная располагалась и в числителе и в знаменателе. А если в числителе и в знаменателе располагаются одинаковые числа, то наибольший общий делитель для них будет само это число.

Например, если вместо переменной a подставить число 4 , то конструкция примет следующий вид: . Тогда четвёрки в обеих дробях можно будет сократить на 4:

Получается то же самое, что и раньше, когда вместо четвёрок стояла переменная a .

Поэтому не следует пугаться при виде сокращения переменных. Переменная это полноправный множитель, пусть даже выраженный буквой. Такой множитель можно выносить за скобки, сокращать и выполнять другие действия, которые допустимы к обычным числам.

Буквенное выражение содержит не только числа, но и буквы (переменные). Поэтому общий множитель, который выносится за скобки часто бывает буквенным множителем, состоящим из числа и буквы (коэффициента и переменной). К примеру, следующие выражения являются буквенными множителями:

3a, 6b, 7ab, a, b, c

Прежде чем выносить такой множитель за скобки, нужно определиться, какое число будет в числовой части общего множителя и какая переменная будет в буквенной части общего множителя. Другими словами, нужно узнать какой коэффициент будет у общего множителя и какая переменная будет в него входить.

Рассмотрим выражение 10a + 15a . Попробуем вынести в нём общий множитель за скобки. Сначала определимся из чего будет состоять общий множитель, то есть узнаем его коэффициент и какая переменная будет в него входить.

Коэффициентом общего множителя должен быть наибольший общий делитель коэффициентов буквенного выражения 10a + 15a . 10 и 15 , а их наибольший общий делитель это число 5 . Значит число 5 будет коэффициентом общего множителя, выносимого за скобки.

Теперь определимся какая переменная будет входить в общий множитель. Для этого нужно посмотреть на выражение 10a + 15a и найти буквенный сомножитель, который входит во все слагаемые. В данном случае, это сомножитель a . Этот сомножитель входит в каждое слагаемое выражения 10a + 15a . Значит переменная a будет входить в буквенную часть общего множителя, выносимого за скобки:

Теперь осталось вынести общий множитель 5a за скобки. Для этого разделим каждое слагаемое выражения 10a + 15a на 5a . Для наглядности коэффициенты и числа будем отделять знаком умножения (×)

Проверим получившееся выражение. Для этого умножим 5a на каждое слагаемое в скобках. Если мы всё сделали правильно, то получим выражение 10a + 15a

Буквенный множитель не всегда можно вынести за скобки. Иногда общий множитель состоит только из числа, поскольку ничего подходящего для буквенной части в выражении не находится.

Например, вынесем общий множитель за скобки в выражении 2a − 2b . Здесь общим множителем будет только число 2 , а среди буквенных сомножителей общих множителей в выражении нет. Поэтому в данном случае будет вынесен только множитель 2

Пример 2. Вынести общий множитель выражении 3x + 9y + 12

Коэффициентами данного выражения являются числа 3, 9 и 12, их НОД равен 3 3 . А среди буквенных сомножителей (переменных) нет общего множителя. Поэтому окончательный общий множитель это 3

Пример 3. Вынести общий множитель за скобки в выражении 8x + 6y + 4z + 10 + 2

Коэффициентами данного выражения являются числа 8, 6, 4, 10 и 2, их НОД равен 2 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 2 . А среди буквенных сомножителей нет общего множителя. Поэтому окончательный общий множитель это 2

Пример 4. Вынести общий множитель 6ab + 18ab + 3abc

Коэффициентами данного выражения являются числа 6, 18 и 3, их НОД равен 3 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 3 . В буквенную часть общего множителя будут входить переменные a и b, поскольку в выражении 6ab + 18ab + 3abc эти две переменные входят в каждое слагаемое. Поэтому окончательный общий множитель это 3ab

При подробном решении выражение становится громоздким и даже непонятным. В данном примере это более чем заметно. Это связано с тем, что мы сокращаем множители в числителе и в знаменателе. Лучше всего делать это в уме и сразу записывать результаты деления. Тогда выражение станет коротким и аккуратным:

Как и в случае с числовым выражением в буквенном выражении общий множитель может быть и отрицательным.

Например, вынесем общий множитель за скобки в выражении −3a − 2a .

Для удобства заменим вычитание сложением

−3a − 2a = −3a + (−2a )

Общим множителем в данном выражении является множитель a . Но за скобки можно вынести не только a , но и −a . Его и вынесем за скобки:

Получилось аккуратное выражение −a (3+2). Не следует забывать, что множитель −a на самом деле выглядел как −1a и после сокращения в обеих дробях переменных a , в знаменателях остались минус единицы. Поэтому в итоге и получаются положительные ответы в скобках

Пример 6. Вынести общий множитель за скобки в выражении −6x − 6y

Заменим вычитание сложением

−6x−6y = −6x+(−6y)

Вынесем за скобки −6

Запишем решение покороче:

−6x − 6y = −6(x + y)

Пример 7. Вынести общий множитель за скобки в выражении −2a − 4b − 6c

Заменим вычитание сложением

−2a-4b-6c = −2a + (−4b) + (−6c)

Вынесем за скобки −2

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Рассмотрим несколько примеров вынесения общего множителя за скобки, чтобы стало понятнее, как это делать.

Примеры вынесения общего множителя за скобки

Пример 1.

Задача разложить многочлен на множители

г) 12*a*b^4 18*a^2*b^3*c

д) 5*a^4-10*a^3+15*a^5

Решение

а) 2*x+6*y = 2*(x+3*y) Здесь мы вынесем за скобки общий множитель, в данном случае 2

б) a^3+a^2= (a^2) * (a+1) Если у нас в многочлене присутствует 1 и более переменных, то её мы можем вынести за скобки (переменную нужно брать с наименьшей степенью в дроби)

в) В следующем примере мы применили навыки двух предыдущих примеров таких как вынесение общего числа за скобки и общей переменной и в результате получим: 4*a^3+6*a^2 = 2*(a^2)*2*a +2*(a^2) * 3 = 2* a^2 * (2*a+3)

г) Обычно для целых коэфициэнтов находят не общий делитель, а самый большой делитель, например для 12 и 18 это будет число 6, а для 8 и 4 это будет 4,

Также тут присутствует переменная b и для неё наименьший показатель равен 3,

А для переменной a, самая маленькая степень будет равна 1.

Для переменной с, наименьшего показателя не имеется, действительно в первом члене переменной cвообще нету.

12*a*(b^4) 18*(a^2)*(b^3)*c = 6*a*(b^3) * 2*b-6*a*(b^3) * 3*a*c = 6*a*(b^3)* (2*b-3*a*c).

д) 5*(a^4) 10*a^3 + 15* (a^5) = 5*(a^3) * (a-2+3*(a^2)

В этом примере мы выработали алгоритм:

На основе нескольких примеров выше, выработаем несколько правил:

1. Вначале мы должны найти наибольший числовой множитель в дроби, чтобы как можно больше упростить выражение.

3.Наконец, мы объединим первые два правила и получим, что нужно выносить за скобки произведение наибольшего числового множителя на переменную(ые) с наименьшим показателем.

Замечание. Иногда мы должны выносить за скобки дробный множитель, это делается из за того что иногда нам приходится работать с дробями т.к. других чисел просто нету. Например:

2,4*x+7, 2*y = 2 ,4*(x+3*y)

3*a/7 6/7 + 9*c/7 = (3/7) * (a-2*b+3*c).

Пример 2.

Разложить на множители:

-(x^4) *(y^3) 2*(x^3) * (y^2)+ 5*(x^2)

Решение будет состоять из выработанного нами алгоритма:

1) Найдем наибольший числовой множитель в нашем примере это -1, -2 и 5.

2) Переменная X находится во всех многочленах и мы можем вынести её с наименьшим показателем, все степени X4, 3, 2; самая маленькая степень это x^2, её мы и вынесем.

3) Переменная yне входит во все члены многочлена, поэтому её мы не имеем права выносить

В результате мы можем вынести x ^2. Но в нашем примере удобнее будет вынести x^2. Тогда получим:

-(x^4) *(y^3) 2*(x^3) * (y^2)+ 5*(x^2) = -(x^2) * ((x^2) * (y^3) +2*x*(y^2) -5)

Пример 3.

Можно ли разделить 5*(a^4) 10*(a^3) + 15*(a^5) на 5*a^3? Если можно, то тогда выполним деление.

В самом начале мы разложили этот многочлен, поэтому воспользуемся ранее полученным:

5*a^4 10*(a^3) +15*(a^5) = 5*a^3 * (a 2 +(a^2))

Получается что деление на 5*a^3 возможно, в итоге получится a - 2 + З*(a^2).

Теперь рассмотрим случай, когда имеет место вынести не один одночлен, а их сумму, к сожалению иногда мы просто не можем вынести за скобку одночлен